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Abstract 

We introduce a variational principle for symplectic connections and study the corresponding 
field equations. For two-dimensional compact symplectic manifolds we determine all solutions of 
the field equations. For two-dimensional non-compact simply connected symplectic manifolds we 
give an essentially exhaustive list of solutions of the field equations. Finally we indicate how to 
construct from solutions of the field equations on (M. w) solutions of the field equations on the 
cotangent bundle to M with its standard symplectic structure. © 1999 Elsevier Science B.V. All 
rights reserved. 
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1. Introduct ion 

On a Riemannian  mani fo ld  (M,  g)  there exists a unique preferred l inear connect ion  V - 

cal led the Levi  Civi ta  connect ion  - character ized by having no torsion and by the fact that 

g is parallel.  On a symplect ic  mani fo ld  (M,  09) there exist preferred l inear connect ions  V - 

cal led symplect ic  connect ions  - character ized by having no torsion and by the fact that w 

is parallel.  Such connect ions  are never  unique:  the set o f  such connect ions  can be identified 

(in a non-canonica l  way) to the space of  comple te ly  symmetr ic  covariant  tensor  fields of  

order  3 on M.  

If  one bel ieves  that l inear  connect ions  are a useful tool to do geometry,  it seems natural 

to introduce a select ion rule - a variat ional  pr inciple  - to choose  one (or a restricted class) 
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of symplectic connections. It may of course happen that the field equations associated with 
this variational principle do not admit solutions on certain symplectic manifolds; we have 

for the moment  no idea as to a possible answer to such a question. But even if this would be 
the case, the determination of those symplectic manifolds for which the space of solutions 

of  the field equations is not empty, is in our opinion an interesting problem. It seems to 

be even more instructive to determine the structure of  the space of equivalence classes of  
solutions of  the field equations (equivalence class under the action of the diffeomorphism 

group). 
In Section 2 we recall elementary properties of  symplectic connections of  the correspond- 

ing curvature tensor and determine all polynomial invariants in the curvature which are of  

degree less than or equal to 2. In Section 3 we introduce two variational principles for a 

symplectic connection and prove that they lead to the same field equations; this slightly 
surprising fact is due to a nice identity relating, on a symplectic vector space (V0,090), the 
exterior product of  2-forms to the natural pairing of these 2-forms induced by coo. Section 

4 describes classes of  solutions of  the field equations which one can read in the literature 

(this is true for certain type of symplectic manifolds only). In Section 5 we begin the study 
of two-dimensional manifolds (M, o9) admitting a preferred symplectic connection (i.e. a 

connection solution of our field equations). The essential point here is the introduction of a 

function 15 which controls completely the geometry. In Section 6 we prove that on a compact 

symplectic manifold the function/5 is either identically zero or that d/5 is not identically 

zero. In this second case we prove that the Hamiltonian vector field X~ associated to/5 
generates a S l action on (M, o9). From this, one deduces easily that if the genus of M is 

such that g > 1, the preferred connection must be locally symmetric. Section 7 is devoted to 

the sphere case. The function/5 admits necessarily only two isolated non-degenerate critical 
points; one constructs on the sphere minus these two points the most general solution of the 
field equations and one shows that it cannot be extended to the whole of S 2. In Section 8 

we give a list of the symmetric symplectic surfaces and in Section 9 we give a list of the 

compact locally symmetric surfaces. It turns out that in most of  the compact cases the locally 
symmetric connection is associated to a Riemannian locally symmetric space. In Section l0 
we prove that on each compact symplectic surface (M, 09) there exists a preferred connec- 

tion and we characterize the space of equivalence classes of  such connections. Section 1 1 
gives a local description of  the preferred connections on the plane (R e, o90); it also gives a 

list of  geodesically complete such connections. It appears from this list that the situation is 
immensely more complicated in the non-compact case. Finally in Section 12 we show how 

to lift preferred connections from (M, 09) to the cotangent bundle T * M  with its standard 
symplectic structure. 

2. Symplectic connections: symplectic curvature tensor 

Let (M, 09) be a symplectic manifold. A linear connection V on (M, o9) is said to be 
symplectic iff: (i) T v ( =  torsion of V) = 0; (ii) V09 = 0. We recall the proof of  the 
following classical proposition. 



E Bourgeois, M. Cahen/Journal of Geometry and Physics 30 (1999) 233-265 235 

Proposition 2.1. Let ( M,  to) be a symplectic manifold. The set o f  symplectic connections 

on (M, w) can be identified with the affine space of  completely symmetric tensor fields o f  

type 0 on M. 

Proof. Let V be any torsion-free connection on (M, co); any other torsion-free linear con- 

nection can be expressed as 

V x Y  = V x Y  + S(X ,  Y),  

where X, Y are vector fields and S is symmetric. The condition Voo = 0 reads 

(Vxo~)(Y, z)  - __s(x, Y, z)  + __s(x, z ,  Y) = 0, 

where S(X, Y, Z) = w ( S ( X ,  Y), Z). A particular solution to this equation is given by 

_s(x, r, z)  = ½(VxO)(r, z)  + Vvo)(x, z)).  

Any other solution S '  differs from this one by a ~ which is completely symmetric. [] 

The curvature R of  a symplectic connection V on (M, w) is defined as usual by 

R(X,  Y ) Z  = (VxVg - VyVx - VIx.YI)Z.  

To this (~) tensor field o n e  c a n  associate a (0) tensor field R by 

R(X,  Y, Z, T) = o)(R(X,  Y )Z ,  T). 

This will be called the curvature tensor of  V. 

The following proposition is obvious. 

Proposition 2.2. Let R be the curvature tensor of  a symplectic connection V on (M,  o)). 

Then 

(i) R(X, Y, Z, T) = -R(Y, X, Z, T) = R(X, Y, T, Z), 
(ii) fx ,r ,  z R__(X, Y, Z,  T) = 0, 

(iii) fx .r ,z(Vxe_)(r,  z ,  T, U) = O. 

The Ricci tensor of  the symplectic connection V on (M, w) is defined by 

r (X ,  Y) = tr(Z --+ R(X ,  Z )Y ) .  

The following properties are easy to check. 

Proposition 2.3. Let r be the Ricci tensor of  a symplectic connection V on (M,  w). Then 

(i) r(X, Y) = r(Y, X), 
(ii) in a local coordinate system {x a ; 1 < a < 2n = dim M} 

not abdCo Cd , rab = r(Oa, Ob) = R__ c 

if  R___,.da b are the components o f  the curvature tensor o f  V and if  

C 09 cd (.Odp ~ ~p ,  
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(iii) in a local coordinate system 

1 n cd 
rab = ~K.cdabO) , 

(iv) define the tensor field E on (M, w) by the expression in any local coordinate system 

- 1  
Eabcd - -  - -  [2gOabrcd + O)acrbd "~ 09adrbc -- O)bcrad -- Wbdrac],  

2(1 + n) 

where 2n = dim M. Then 

Eabcd = - -Ebacd  = Eabdc,  

o)ad Eabcd = rbc, 

f Eabcd = O, 

a,b.c 

(.oabEabcd = 2rcd ,  

(v) let W be the tensor field on (M, 09) defined by 

R = E + W .  

Then W has all symmetries of the curvature tensor. In dimension 2 (n = 1), W = 0, 
hence R = E. Furthermore 

(D ad Wabcd = 60 ab Wabcd = O. 

We observe that in view of the above proposition and of the symmetry of the Ricci tensor, 
there is no analog of the scalar curvature for a symplectic connection. 

It is natural to define symplectic Einstein manifolds (SE) as symplectic manifolds admit- 
ring a symplectic connection V such that 

R = W ,  

or equivalently 

r ~ 0 .  

Similarly we define symplectic simple manifolds (SS) as symplectic manifolds admitting a 
symplectic connection V such that 

R = E .  

The following lemma, which is a direct consequence of the definition of the tensor field 
E, gives the list of polynomial invariants in the curvature tensor of degree smaller or equal 
to 2. 

Lemma  2.1. I f  R__abca (resp, rab ) are the components of  the curvature tensor (resp. the Ricci 
tensor) of  a symplectic connection V on (M, 09) denote 

Rabcd  aa' bb' cc' d d ' ~  rab ' ' O) O) 09 09 ~ , b ~ c , d  , , = o9 aa 09 bb ra,b,. 
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Then 

4 rabrab "}- WabcdWabcd" R---abcdRabCd -- 1 + n 

Proposition 2.4. Any polynomial invariant of degree smaller or equal to 2, in the curvature 
tensor R of a symplectic connection V on (M, co), is a linear combination of the two 
following invariants 

r,/~r ab R~zbcd Rabcd 

3. A variational principle for symplectic connections 

An invariant functional J on the space of symplectic connections V on (M, co) may be 
defined by an expression of the form 

f cot7 
J =  A ~-.I, 

where A is a scalar invariant depending on the curvature R, eventually of a certain number 

of its covariant derivatives, and of the symplectic form co. 

We have assumed in this paper that A is a polynomial function in R of degree smaller 
or equal to 2. In view of Proposition 2.4, any functional is a linear combination of the two 

following ones: 

j oefl f w" f co" = - - ,  -m_ R g_abcd Rabcd - - .  rab rab ,/2 def 
n! n! 

The Euler-Lagrange equations for JI read: 

f (Vxr)(Y, 0 ¥X, Y. Z vectorfieldson M. Z) 

X.Y,Z 

Locally this is expressed as 

f rat,:c O, (3.1) 

a,b,c 

where ; means covariant derivative. 

The Euler-Lagrange equations for J2 read locally: 

f R o9 pq O. (3.2) --pbcd: q 
b,c,d 

Using Bianchi identities (Proposition 2.2, (iii)) appropriately contracted one gets 

Proposition 3.1. The Euler-Lagrange equations (3.1) and the Euler-Lagrange equations 
(3.2) coincide. 
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This can be understood using the following lemma, due to Rawnsley. 

Lemma 3.1. Let (~2n, coo) be the standard symplectic vector space and let ~o , ~p be elements 

of  A2(R2n). If{ea , 1 < a < 2n} is a basis o f R  2n and {e a } is the dual basis 2n of  R,  , we 

have for  ~o, 7t, o90 the representation 

1 a b 1 a b 1 a b ~0 = ~qgabe . A e,,  ~t : ~ ~fabe, A e,,  coO = ~ogabe, A e,.  

Define a bilinear symmetric form B on A2(~ 2n) by 

' ' "b' aa' t B(~o, ~t) = ~qgabl[fa,b, o9 aa (Do , o9 oga b = ~ .  

Then. 

n-2 ½[B(~o, O90)B(~, 090) - B(~,  ~)]o9~). ~ A ~ A ~  0 = 

The proof is by straightforward calculation. 

The curvature R at a point is a 2-form with values in the endomorphisms of the tangent 

space at this point; one may define R o A R as the 4-form with values in the endomorphisms 

of the tangent space obtained by taking the exterior product of the 2-forms and composing 

the endomorphisms. The 4-form 

A 
tr(R o R) 

at the given point is then scalar valued. Similarly one may compose the endomorphisms 

B(R, coo) and B(R,  o9o) and take the trace; and do the same for B(R,  R). Lemma 3.1 above 
then implies that 

e l  A o9n-2 = ~ rabrab_ R__abcdRabcd wn 

where P1 is a 4-form which represents the 1st Pontrjagin class of M. As the Pontrjagin class 
does not depend on the chosen connection, we have, in view of Proposition 2.4 

Proposition 3.2. A variational principle for symplectic connections whose lagrangian den- 

sity is a polynomial in the curvature of  degree smaller or equal to 2 is unique. 

4. Examples 

Let (M, 09) be a symplectic manifold. An almost complex structure J is said to be 
compatible with w if 
(i) o9(JX, J Y )  = co(X, Y), YX, Y vector fields, 

(ii) w(X,  J X )  > 0 i f X  5 0 .  
Such compatible almost complex structure always exist [1]. Define, for a given compatible 
J ,  a Riemannian structure g by 

g(X, Y) : w(X,  JY) ,  
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and let V(g / be the Levi Civita connection associated to g. The manifold (M, ~o, J)  is said 

to be Kiihler if 

V(~)J = O. 

Then V(g)O) ----- 0 and V(g) is a symplectic connection. There are now two curvature tensors: 

(i) __R(X, Y, Z, T) = o9(R(g)(X, Y )Z ,  T) which is the symplectic one. 
(ii) R'(X,  Y, Z, T) = g(R(g)(X,  Y ) Z ,  T)  which is the Riemannian one. 

They are related by 

R~(X, Y, Z, T) = __R(X, Y, Z, J T ) .  

There is only one Ricci tensor. There is also a Ricci form 

p(X ,  Y) = r(X,  JY ) .  

In a local coordinate system one gets 

l , - ,  s t z P  
Pab = rapJff = "~. .~ tapO)  d[~ 

I n  l s trP = - Ksta O)lpO) d[~ 
I l ) t  s t  I D t  s t  

"~- 5 L, s t a b O )  ~ ~ _ L . a b s t  O) . 

Hence by the Bianchi identities, in the Riemannian case, one gets 

f P.b;c = O, 
o , b , c  

which means that p is a closed 2-form. 
The field equations 

f (Vxr)(Y, Z) 0 

X , Y , Z  

are equivalent to 

( V x r ) ( X ,  X) = 0 ¥X vector field. 

In the K~.hler case, this equation is known as the D'Atri condition [2, Section 16.53, p. 450]. 
The D'Atri condition is satisfied if the geodesic symmetry at a point preserves the volume 
(locally) [2, Section 16.52, p. 450]. Clearly in dimension > 4 K~ihler Einstein spaces 
(i.e. r = )~g) are solutions of the field equations. In particular, any coadjoint orbit of a 
compact group admits such a Kahler Einstein structure which is unique (up to homothety) 
[2, Theorem 8.2, p. 208]. It is a famous result that any compact complex manifold with 

negative first Chern class admits a K~ihler Einstein metric [2, Theorem 11.17, p. 322]. Also 
the K3 surfaces admit K~ihler Einstein metrics [2, Section 12.105, p. 365]. 
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5. The two-dimensional case: a local approach I 

We first observe that in dimension 2, the symplectic curvature tensor __R reduces to its E 

part; also any covariant antisymmetric 2-tensor field is proportional to o9. So in any local 

chart one has 

R_~a, cd = --ogabrcd. (5.1) 

Also the field equations, in dimension 2, are equivalent to the existence of  a l - form u such 

that 

not 
rab:c = (Vcr)(aa,  ab) = ogacUb + ogbcUa. (5.2) 

L e m m a  5.1. There exists a funct ion  fl such that the covariant derivative o f  the 1-form u is 

given by 

Ua:b = flogab. (5.3) 

The second covariant derivative o f  the Ricci tensor is expressed in terms o f  this funct ion fl 

by 

r,,&cd = fl(ogabogcd + ogbco9ad). (5.4) 

The f irst  and second covariant derivatives o f  fl are given by 

fla k = r~ uk,  (5 .5 )  

fl,;b = -UaUb + flrab. (5.6) 

Proof. The Ricci identity for the second covariant derivatives of the Ricci tensor reads 

rab:cd -- rab:dc = -- RdcaP rpb -- Rdcb P rap = ogdc(raP rpb + rP rpa) = O. 

Hence 

ogacUb:d -J- ogbcUa;d -- o9adUb;c -- ogbdUa:c = 0, 2(Ub;a -~- Ua;b ) : O, 

which proves (5.3). Formula (5.4) is a direct consequence. 

The Ricci identity for the second covariant derivative of  the 1-form u gives 

k bla:bc -- Ua;cb : --ecbak Uk --__ ogcbratt k = ogabt~c -- ogact~b. 

Hence (5.5). Deriving this relation we get 

t~a;b ~-- rap;bogPkltk -1- rapogpk flogkb ~- ogpbUaogPkuk "~ flrab = --UaUb -~- flrab. [] 

The function/3 will play the crucial role in all that follows. In particular: 

Proposition 5.1. The symplectic connection V is locally symmetric  i f  and only i f  [~ = O. 

Proof .  If/~ = 0, (5.6) implies u = 0 and hence Vr  = 0; thus VR = 0. Conversely if 

VR = 0, u = 0 and (5.3) implies fl = 0. 
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L e m m a  5.2. There exist real numbers A,  B such that 

r,,b~,,Kt, = / 3 2  q_ B, (5.7) 
1 a b ~rahr = 13 + A, (5.8) 

where -ffa o)ab = ut,. 

Proof .  Deriving the left-hand side of  (5.7): 

(ral,-ff"-ffh):, = rab /3(o)acUb + Uao)lw) = 2/3/3,. = (/32):,. 

Hence formula (5.7). 

Deriving the left-hand side of  (5.8): 

1. ah. ½ (o)acUb + o)bcUa)r a~' b ~trabr  ),c = = rcUb = fie'. 

Hence formula (5.8). 

L e m m a  5.3. 
(i) The Hamiltonian vector field X~ and the vector field -~ (i (-g)o) = u) commute. 

(ii) The 1-forms u and d/3 are linearly independent at all points p where r I, (-& if) ¢ O. In 

fact  

u A d/3 = - r ( g ,  g)o). (5.9) 

Proof .  One has 

i([fi-, X/~])o) = (i(fi-)£x~ - £x~i(u-))o), = - i (Xl~)  du - du(X/0 .  

But Eq. (5.3) implies 

du = -2/3o) 

and 

u(X~)  = o),,b-ffa x ~  = --ffa /3a = raffffa-ff b =/32 + B. 

Hence 

i ([~-, Xt~])o) = 2fl d r  - 2fl d/3 = O, 

which proves (i). For (ii) notice that 

u A dfl k~c ( U l f l 2  - U2fll) dx I A dx 2 

--o)12o)abuaflb d x  I A d x  2 

= -ffPflpo) ~-- --r(-ff, -if)o). [] 

Propos i t i on  5.2. Assume dfl • 0 and let U = {p ~ M lrp(-ff,-if) -7/= 0}. Then the preferred 

connection must be given locally on U by the formulae 

V~-a = - ~ ,  V~Xz  = - ~ X z ,  V x z X z  = (/32 + 2A/3 - B)~. (5.10) 
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Conversely, given a 1-form u and a non-constant function/3 such that u(X~) = /32 4- B, 

then formula (5.10) define on the open set/32 ~ _ B a preferred connection. 

Proof.  One has locally 

V~-U : -~a-Ub. a O b : -l~a 6oPb /30)paO b : --/3R. 

Similarly 

V ~ X  [~ : -ffa /3baO b : -ffa o)Pb (--UpUa 4-/3rpa)Ob ~-- --/3 X ~. 

Finally 

VX~ Xfl =/3a/3blo b : /3po)Pa Ogqb (--UqUa +/3rqa)Ob 

=  r/3p  _/3r 'r   wqhob 

= _(/32 4- B)-ff -/3rqPrpiJSusafibOb 

= _(/32 4- B)u 4- l/3(rcdrCd)ogqlmlSusr.oqbo b 

1 cd - -  : _(/32 + B)-ff+ ~/3(rcdr )u, 

= (_/32 _ B + 2/32 + 2A/3)~ 

= (/32 + 23/3 - B)~. 

Conversely assuming (5.10) we get 

R(K, X/~)K = -K(/3)X/~ = (/3 2 +/3)X/5, R(u-, X~)X~ = -2( /3  + A)(/3 2 + B)u-, 

and for the Ricci tensor 

r(~-, ~-) =/32 + B, r(K, X~) = 0, 

r(X~, X/~) = 2(/3 4- A)(/3 2 4- B). 

The non-vanishing components of  the covariant derivative of  the Ricci tensor are 

(VTr)(X~, X~) = -2( /3  2 4- B) 2, (Vx , r ) (u ,  X~) = (/32 4- B)2, 

which shows that the field equations are indeed satisfied. One checks also that the constructed 
connection is symplectic. [] 

6. The two-dimensional case: a global approach I 

L e m m a  6.1. I f  d/3 = 0 and/3 ~ O, the manifold M is not compact. 

Proof.  One has w = - (1 /2 /3 )  du = d(u/-2/3)  which cannot occur in the compact case. 
[] 

Lemma 6.2. / f  (M, co) is compact and V is not locally symmetric then all critical points 
o f t  are either absolute maxima or absolute minima. I f  K = max/3 (resp. k = min/3) then 
K > O , k = - K a n d B = - K  2 <0.  
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Proof .  One s imply  observes  that  at a cr i t ical  point  p ,  

up(XtD = 132(p) + B = 0. 

Hence  B = - K  2. 
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L e m m a  6.3. The function fl admits at least one non-degenerate critical point. (M is as- 

sumed to be compact.) 

Proof. Let  p be a cr i t ical  point.  Then 

Hessp13 = det(13a:b)(p) = 131:1132;2 - -  131 ;2132; I 

= det ¢olo)aa'o)bb'13a;b13a,:b' 
= det  w½waa'wbb'(--UaUb + flrab)(--Ua'Ub' + flra'h') 

= det w½ ( -2f l r ( f i - ,  K) + fl2rabrab) 

= det  w(-13(13 2 + B) + f12(2fl + 2A))  

= d e t w f l ( p ) ( - f l  2 - B + 2fi 2 + 2Aft) 

= detwf l (p)( f l  2 + 2Aft - B) 

= det  w ( ± I ) 2 K ( K  2 ± A K )  

= det  w ( + I ) 2 K 2 ( K  4- A). 

Hence  if  A 5~ + K  all cr i t ical  points  are non-degenera te ;  i f  A has one of  the except ional  

values,  then ei ther  all m a x i m u m  points  or all m i n i m u m  points  are non-degenera te .  [] 

L e m m a  6.4. Let ~ot be the f low associated to the vector field -ff (which is complete as M is 

assumed compact). Then 

(i) the f ixed points o f  ~ot are critical points o f  fl 

(ii) any non-constant integral curve of-ff goes from the set o f  minima o f  fl (for t = -(x~) to 

the set o f  maxima of  fl (for t = +oo ). 

Proof, If ~p 0, then 13a (P) = = r ,  uk (p )  = 0. Fur thermore  

_ffa13 a _ d13 _ 132 "k K 2. 
dt 

Hence  

(K + 130)e 2Kt - (K  - 130) 

13(t) = K (K -+- 130)e 2Kt q- (K  -- 13o)" [] 

P r o p o s i t i o n  6.1. Assume M compact and d13 5~ O. Let ~ be the f low associated to the 

hamiltonian vector field X ~. Then 

(i) ~r s is a group o f  affine transformations o f  (M, V). 

(ii) There exists a smallest positive number r such that @r = i d ; in particular X ~ generates 

a strongly Hamiltonian action o f  the torus S l on (M, o9). 
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Proof. XZ is an affine vector field if 

£ , x e V r Z  = VCx~yZ + V v E x ~ Z  

for any vector fields X, Y, Z. This is easily checked using for vectors Y and Z the vectors 

g and Xfi, the relation (5.10) and Lemma 5.3(i). 

As fl admits an isolated critical point p,  consider a neighborhood £2p, which is the domain 

of  a chart with coordinates x, y such that in £?p 

fl = ( T K  4- (x 2 4- y2)). 

The upper signs correspond to p,  a minimum, and the lower signs correspond to p, a 

maximum. Let q • S2p. The local curve fl = fl(q) is a circle, which is an integral curve of 

Xt3. Let r be the smallest positive number such that ~ r (q )  = q. We claim that r does not 

depend on q. If  q '  • I2p and fl(q') = fl(q), rq = rq,. If  fl(q') ~ fl(q), let l be defined by 

fl(~ot(q') ) = fl(q). Then 

~r o ~ol(q') = q91(q') = ~o! o ~Pr (q') 

and thus 

~P~ (q') = q' .  

The diffeomorphism ~Pr is thus the identity when reduced to Wp; as it is an affine transfor- 

mation ~Pr = id. The S 1 action is then defined by 

e iO • x = lPrO/2zr(x). [] 

Theorem 6.1. Let (M, w) be a connected two-dimensional compact symplectic manifold 

such that its genus g is > O. I f V  is a symplectic connection which satisfies the field equations, 

then V is locally symmetric. 

Proof.  As V is a solution of  the field equations, the second covariant derivative of  the Ricci 

tensor defines a function ft. If  fl = 0, V is locally symmetric. As M is compact, fl cannot 

be constant and different from 0. If  fl is not constant, there exists a strongly Hamiltonian 

action of  S 1 . From this follows easily that fl is a Morse Bott function with even dimensional 

critical manifolds [3]. There cannot be a two-dimensional submanifold as the action of  S l 

is not trivial. Hence all critical submanifolds are of  dimension 0 and hence isolated critical 
points, which are non-degenerate. This implies that 

p 4- q = x (M) ,  

where p is the number of  minima and q the number of  maxima. Also p > 1, q > 1 and 

X (M) < 2 lead to the desired contradiction. [] 

Remarks.  

(i) The only case where a non-locally symmetric solution of  the field equations in the 

compact case might exist is the sphere S 2. 
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(ii) As the Hessian is positive we have 

A > K > - A .  

245 

7.  T h e  s p h e r e  c a s e  

We know that if (M, w) is compact,  and V is not locally symmetric,  then (M, w) is 

diffeomorphic to the standard sphere S 2, endowed with its standard symplectic structure 

o9o and the S 1 action is the usual rotation around an axis [4]. We shall scale oJo such that 

the area of S 2, relative to wo, is 4rr. 

We shall use "latitude, longitude" (0, ~o) coordinates on S e and write local expressions 

in the open set S 2 \ {north and south pole}. In these coordinates 

o) = cos 0 dO A d~o, go = dO ® dO + cos 2 0 dq0 ® d~p, 

where go is the standard Riemannian metric on S 2. If V denotes the Levi Civita connection 

corresponding to go, one has 

VaoO0 = 0 Va~O~ = sinOcosO0o, 

Va. O~ = -  tan 00~ = Va~O0. 

The function fl associated to the symplectic connection reads 

fl = K sinO, X# = - K O ~ .  

The symplectic conditions are: 

Fro + F ~  = - tan O, 

If  one writes the 1-form u as 

u = uj dO + u2d~o 

the vector field ~ is 

/A'~ Ul 

cos 0 cos 0 

r0°, + : 0 

and the condition [K, X~] = 0 tells us that 

0q)U 2 = 0 = OcpU I. 

As X# is an affine vector field, the Christoffel symbols are independent of ~p. Recall that 

we have 

bta: b ~- ~O)ab. 

Hence 

Oou, - Fo°oUl - F ~ u 2  = 0 ,  - F ~ u l  - Fo~U2 = K sinO cosO, 

O o u 2 -  ro°,pul - ro~ou2 = - K  sinO cosO, - r°~oul  - r~ou2 = o. 
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The second and third of  these equations imply 

u 2 = K c o s  2 0 + a  ( a 6 R ) .  

On the other hand: 

-ffafla = --r(fi-, fi-) = K -- f12, ----- K 2 cos 2 0 = Ku2 

which shows that a = 0. 
We now use relations (5.8) to determine the Christoffel symbol and we get 

uzi o 
K2 cos2 O Fo°o - 2Ku, F°, + c~s2 o F~o, =0,  

U 2 

-KOoUl - 2Kul tan0  + K 2 cos 20F~o - 2 K u l F ~  + /-,~o = 0, COS 20 - ~o~o 

KUl ~0 
- x 2 c o s  o + o l =0 ,  

KUl ~ K2 
-K2cosOFo~p + c--o~s 0 F~o = sinO, 

F$ ° = cos 0 ( K  sin 20 + 2A s in0 + K) ,  

F ~ - -  ul o ( K s i n 2 0 + 2 a s i n O + K )  
K cos 

which simplify easily to give 

2 (K sin 2 0 + 2A sin 0 + K) ,  
F°°~°- K c o s e  

F o • =  - tan 0 

rooo _ "2, 
K 2 cos 30 

1 
F~o - K cos2 oOOUl 

U~ 
0-(K sin 20 + 2A s in0 + K) ,  

K 2 cos 3 

(K sin 20 + 2A sin 0 + K) ,  

u~ ( K s i n Z O + 2 A s i n O + K ) .  
K 3 cos 50 

m 
We can now evaluate the size of  the tensor field S = V - V in terms of  the norm given by 

the metric go. We get 

[ 3 ]2 
1 u 1 $2 2u~ p2 + OOUl _ 

--  K4 cos60 K2 cos20 ~ P  

u 2 1 • 2 p2 
1 2 + 0 + 2 s i n 0 P ] ,  + K- ~ P ~ [sin 

1 
> ~ ( s i n 0  - p)2 ,  
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where P = K sin 2 0 + 2A sin 0 + K. In order for the connection to extend to the whole of 

S 2 it is clearly necessary that limos±r~2 S 2 remains bounded. Now for this to be true it is 
necessary that 

lim ( s i n 0 - P ) = 0  
0---, ±~/2 

i.e. 

1 - K - 2 A - K = O ,  - 1 - K + 2 A - K = O  

which leads to K = 0 which is impossible. Hence 

Theorem 7.1. A connection solution of  the field equations on the sphere S 2 is necessarily 

locally symmetric. 

Putting together Theorems 6.1 and 7.1 give: 

Theorem 7.2. A connection solution of  the field equations on a compact surface is neces- 

sarily locally symmetric. 

8. The symmetric symplectic surfaces 

If  (M, co, V) is a connected locally symmetric, complete, symplectic manifold, then its 

universal coveting (,Q, ~b, ~') is a simply connected symplectic symmetric manifold. Hence 
M = r \ M where F is a group of symplectic affine transformations of  (&t  ~, x~) acting 

freely and properly discontinuously on M. 
So the first step is to determine the simply connected symplectic symmetric surfaces. 

Recall that one associates to a symplectic symmetric space an algebraic object, called a 
symmetric triple (G, or, 12) [5]. Such a triple is composed of a finite dimensional real Lie 

algebra ~, of an involutive automorphism cr of  ~ and of a real valued Chevalley 2-cocycle 

of ~, I2, for the trivial representation of G on ~. These 3 elements satisfy the following 

axioms: 
- l fG =/CG79wherecrF~: = idl~: andcrl~ = -idlT, then [79, 79] = / C  and the representation 

adlT,/C is faithful. 
- For any k ~ 1C, i(k)I2 = 0 and I217,×7, is a symplectic form on 79. 
The dimension of 79 is called the dimension of the symmetric triple. It is well known that 

the isomorphism classes of symmetric triples correspond bijectively to the isomorphism 
classes of simply connected symplectic symmetric spaces. An easy calculation leads to 

Proposition 8.1. The list of  isomorphism classes of  two-dimensional symplectic symmetric 

triples is the following: 
(i) G = ~2 = abelian two-dimensional Lie algebra 

cr = - i d  G 
S2 = any symplectic form on ~2 
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(ii) G = sl(2, ~). Let (H,  E, F) be its standard basis. The multiplication reads [H, E] = 

2E, [H, F] = - 2 F ,  [E, F] = H. 
1G = RH, 79 = RE ~ RE 

C2(E, F) = p (~ R*) 

(iii) g = sl(2, R) 
K~ = R ( E -  F), 79 = ~ H  ~ ~ ( E  + F)  
~2(H, E + F)  = p (E ~*) 

(iv) g = so(3, ~). Let (X, Y, Z) be its standard basis. The multiplication reads [X, Y] = 

z ,  [Y, z]  = x ,  [z ,  x ]  = r .  

E = ~ z ,  79 = R x  • ~ r  

S2(X, Y) = p (e ~*) 

(v) ~ = £(2) = Lie algebra of  the isometry group of the euclidian plane. Let (X, Y, Z) be 

its standard basis. The multiplication reads IX, Y] = 0, [X, Z] = Y, [Y, Z] = - X .  

= ~Y, 79 = RX + ~ Z  

~ ( x ,  z )  = 1 

(vi) G = A//(2) = Lie algebra of  the isometry group of  the minkowski plane. Let (X, Y, Z) 

be its standard basis. The multiplication reads IX, Y] = O, [X, Z] = Y, [Y, Z] = X. 

1C = ~X,  79 = RY + ~ Z  

~ ( Y ,  Z) = 1 

R e m a r k s .  
(i) In case II, the subspace RE (resp. ~ F )  is stabilized by ad E. In case V, the subspace 

RX  is stabilized by ad 1G. In case VI, the subspace RY is stabilized by ad 1C. 

(ii) In cases II, III, IV,, the isomorphism class is determined by a parameter p, which 

measures the "size" of  the symplectic form. 

(iii) In case II, the symmetric bilinear form Q on 79 defined by 

Q(E,  E) = Q(F, F) = O, Q(E, F) = 1 

is ad I~ invariant and of  signature (1, 1). 

In case Ili, the symmetric bilinear form Q on 79 defined by 

Q ( H , H ) =  1 = Q(E + F , E  + F), Q ( H , E  + F ) = O  

is ad 1C invariant and of  signature (2, 0). 
In case IV, the symmetric bilinear form Q on 79 defined by 

O(X, X) = 1 = Q(Y, Y), Q(X, Y) = 0 

is ad 1C invariant and of  signature (2, 0). 
(iv) In cases V, VI, there are no non-degenerate ad )U invariant symmetric bilinearform on 

79. 

The description of the simply connected symplectic symmetric surfaces corresponding 
to the list of  Proposition 1 is as follows: 
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(i) The plane •2 with its standard symplectic structure 09o, and the standard fiat affine 

connection. 

(ii) Consider the adjoint orbit of the element H of sl(2,  ~).  If (" ~), (ad - bc ---- 1) 

denotes an element of SL(2 ,  ~), a point of the orbit of H has components 

(ad + b c ) H  - 2abE + 2cdF.  

It is a one-sheeted hyperboloi'd in sl(2,  ~).  The symplectic form is the standard Kostant 
Souriau form. Its symmetric symplectic connection is the Levi Civita connection as- 

sociated to the Lorentz metric, which is the constant negative scalar curvature Lorentz 

metric. The model for II is the universal coveting of this orbit. 
(iii) Consider the adjoint orbit of the element E - F of sl(2, R). With the same notations 

as above, a point of this orbit has components 

- ( b d  + a c ) H  + (b 2 + a2)E - (c 2 + d2)F. 

It is one connected component of a two-sheeted hyperboloid in sl (2, ~). The symplectic 
form is the standard Kostant Souriau form. The symmetric symplectic connection is the 

Levi Civita connection associated to the Riemann metric, which is of constant negative 

scalar curvature. It is diffeomorphic to E 2. 
(iv) Consider the adjoint orbit of the element Z in so(3, R). It is the standard 2-sphere with 

its canonical symplectic structure. The symmetric symplectic connection is the Levi 

Civita connection associated to the standard metric of S 2. 
(v) Consider the coadjoint orbit of the element Y* of£(2)* (where X*, Y*. Z* is the dual 

basis of the basis of £(2) given in Proposition 1). If one denotes by (0, a, b) an element 

of E(2), a point of the orbit of Y* has components 

(a cos 0 + b sin O)Z* - sin OX* + cos OY*. 

It is a circular cylinder. The model for V is the universal covering of this orbit. 
(vi) Let M (2) be the connected component of the group of isometries of the Lorentz plane 

~2, go = 2da ® db. Let (t, u, v) be an element of M(2) acting by 

(t, u, v) • (a, b) = (eta + u, e - t b  + v). 

Let (Z, X, Y) be the basis of the Lie algebra M(2)  given by 

Z = Otlo, X ---- OulO, Y = 0vl0, 

and let Z*, X*, Y* be the dual basis of M(2)*.  A point in the coadjoint orbit of the 

element (X* + Y*) has component 

( _ u e  - t  _ v e t ) Z  * + e - t  X * + et y * 

it is a connected component of an hyperbolic cylinder in .A,4(2)* and is thus diffeo- 
morphic to ~2. 
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9. The two-dimensional compact complete locally symmetric symplectic space 

Any such space (M, w) is a quotient of its universal cover (M, &) (which is symmet- 
ric symplectic surface) by a group /" of symplectic affine transformations acting freely 
and properly discontinuously on (,Q, &). So we examine successively the cases given in 
Proposition 8.1. 

For case I, the plane R 2 with its standard symplectic form and with a fiat torsion-free 
affine connection, we are helped by the following result of Milnor [ 11 ]. 

Proposition 9.1. A compact orientable surface o f  genus g > 2 does not admit an affine 

connection with zero curvature. Hence we have 

Lemma 9.1. Any compact symplectic surface having the standard symplectic plane (E2, O9c) 
with a flat torsion-free affine connection as universal cover is necessarily a flat torus. 

For case II, the universal cover (2~, ff~) of the adjoint orbit of H in sl(2, R), we first describe 
the automorphism group of (M, d~). It is known [5-7] that the automorphism group A is 
the intersection of the affine group of M with the group of symplectic diffeomorphisms 
of ()Q, ff~). It is also known [6,7,12] that the algebra .4 of A contains the algebra G of the 
transvection group G o f / ~  and is composed of derivations of this algebra. 

As G = sl(2, R), .A = G and the transvection group G is the identity component of A. 
Let a be any automorphism of M stabilizing a base point ~ (6 M); the differential a.a 
being symplectic, belongs to SL(2, R). It is also affine and thus commutes with the action 
of the curvature endomorphism. Taking a basis E, F of Ma, as in Proposition 8.1 and with 
obvious identifications, one sees that 

(r 0) 
l r E R 0 .  

(a,~) = 0 r 

Composing a .  0 with the differential of an element k of the stabilizer of 6 in G, one can 
reduce (a.6) to 6 I. The symmetry sa at ~5 has differential - I  and thus coincides with a. As 
sa is an isometry of M, for its Lorentz metric, we conclude that the automorphism group of 

is composed of isometries and hence that any affine compact quotient admits a Lorentz 
metric of constant negative scalar curvature. 

It is well known [13] that any compact manifold admitting a Lorentz metric has vanishing 
Euler-Poincar6 characteristic; hence in dimension 2 is a torus T 2. 

One also known [14] that the Gauss-Bonnet theorem is valid independently of the sig- 
nature; hence that 

if X = - -  T1)g, 
7[ 

where r is the scalar curvature of the Lorentz metric. 
This implies in particular that there cannot exist a constant, non-zero curvature Lorentz 

metric on T 2. Hence we have 



E Bourgeois, M. Cahen/Journal of Geometry and Physics 30 (1999) 233-265 251 

Lemma  9.2. The universal cover of the orbit of H in sl(2, R) does not admit a compact. 

affine symplectic quotient. 

For case III, the adjoint orbit of E-F  is sl(2, R), we first determine (as for case II) the 

automorphism group A of the orbit. The algebra A of A coincides with the algebra ~ of 
the transvection group G as ~ = sl(2, R). I f a  is any automorphism of the orbit, stabilizing 

(E - H), its differential a.E_ F being symplectic belongs to SL(2, ~). As it commutes with 
the curvature endomorphism, it has, relative to the (H, E + F) basis of the tangent space 

to the orbit at E - F, the matrix: 

( a ' E - F ) = (  rs --S)r ' r 2 - k - s 2 = l "  

Hence a.E_ e coincides with the differential of an element k of the stabilizer of E - F 

in G. Hence A = G and the automorphism group of the orbit is composed of isometries 

of the orbit relative to its Riemannian metric of constant negative curvature. In fact all 
these isometries are holomorphic with respect to the standard almost complex structure 

on the orbit. Hence the group F of such transformations of the covering is a group of 
holomorphic isometries. The sought for compact quotient is thus necessarily a compact 

Riemann surface endowed with a metric of constant negative curvature. Using Gauss- 

Bonnet one has 

Lemma  9.3. The orbit of E - F in sl(2, E) admits as possible compact quotients an 

orientable surface of genus g > 2. 

Remark.  Poincarg' s theorem [91 ensures the existence, on any orientable compact surface 
of genus g >_ 2 of a Riemannian metric of constant negative curvature. 

For case IV, the orbit of Z in so(3, R), one shows in a completely analogous way that the 
automorphism group of the orbit (the standard sphere S 2) is the three-dimensional rotation 

group S O (3). One checks easily that the rotation group does not admit a discrete subgroup 

acting freely on S 2. 

Lemma 9.4. The sphere S 2 does not admit a non-trivial affine symplectic quotient. 

For case V, the universal cover (,Q, ff~) of the orbit of Y* in £(2)*, (we use the notations 
of Proposition 8.1) we start as above to determine the automorphism group A of (aT/, ff~). 
If a is an element of A stabilizing the point base ~(~ IVI), a, a ~ SL(2, R); furthermore 
as it commutes with the curvature endomorphism, its matrix, in the basis {X, Z} given in 

Proposition 9.1, is: 

( 0  C )  ~ 2 =  1, c~ lR .  
(a,,O = E 
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If  k ~/G, an element exp k of  the isotropy subgroup of  the transvection group G of  ,Q has 

a differential of  the form: 

(expk),~ = 0 1 " 

We can assume that a% = :t:I and clearly - I  is the differential at 0 of %, which is an 

automorphism of M. 

Hence A has two connected components, G being the identity component of  A. 

We now show that the universal cover of  the group E(2) is the transvection group of  Jl¢ 

(~  R 2) and describe its action on N2. 

The universal cover of  E ( 2 ) ( ~  N2) is the set of  pairs {(0, c¢)10 ~ R, ~ ~ C} with the 

multiplication 

(0, 0 t ) (01,0t l )  = (0 q -01 ,  eiOotl -Tt-~). 

The involutive automorphism of this group corresponding to our algebraic model is 

a (0 ,  oe) = ( - 0 ,  - ~ ) .  

The group of  fixed points of  0r is K = {(0, i r ) l r  ~ N}. The projection zr : G --+ G / K  ~ i(I 

is given by 

rr(0, a )  = (0, u = cos0Re ~ + sin 0Im or). 

The action of  G on )t) is: 

(0, ~), (01, Ul) = (0 + 01, Ul + cos(0 + 01)Re ot + sin(0 + 01)Im oe). 

The action is effective and thus G is the transvection group of  117/. 

The curvature endomorphism stabilizes the direction of  X. As the cover/ l )  --+ M / F  = 

M is affine, there exists on I f l / F  a smooth fe ld  of  directions. As M is compact we have 

X (M) = 0 and hence M (if it exists) must be diffeomorphic to the torus T 2. The group F 

is thus isomorphic to 7/2 and we are thus going to describe, up to conjugation, the discrete 

subgroups of  A isomorphic to 27 2, and their action on ,Q. 

As A has two connected components, F N Ao is a subgroup Fl of  finite index in F ,  

isomorphic to 7/2. We shall only describe, up to conjugation the subgroups FI of  G. Now 

if (a, z) ~ G, its conjugacy class is composed of  all elements 

(0, ot)(a, z)(O, or) -1  = (a ,  (1 - eia)~t + ei° z) 0 E ~, ot E C. 

We have thus two types of  conjugacy classes 

(1) a = 2kzr ~ 3 a representative of  the class where Im z = 0, Re z >_ 0. 

(2) a ¢ 2kzr ~ 3 a representative of  the class where z = 0. 

Let Y1 be one of  the generators of  F1 and assume that the conjugacy class of  Y1 is of type 
(1). We may thus assume 

y! = (2kzr, r), r 6 R +. 
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If  Y2 is the other generator of  El, the fact that 1/1 and }/2 commute implies: 

Y2 = (2/Jr, ~) if r > 0, 

no condition on 1/2 if r = 0. 

In this second part of  the alternative, we can by a conjugation stabilizing YI assume that )/2 
has one of  the two following forms 

V2 = (2mJr, s), s > 0, (a) 

o r  

Ye = (0, 0), 0 :~ 217r. (b) 

If  y2 is of  type (a) we have for the action of  the generators on ,Q: 

V l ( x , u ) = ( x  +2krr, u), y 2 ( x , u ) = ( x  + 21zr, u + c o s x s ) .  

This shows that V ~ y l  l fixes all points of  the form ((2p + 1) 2 , u) and thus the action of  Ft 

is not free. 

If  1/2 is of  type (b), the action of  the generators on M is given by: 

V~ (x, u) = (x + 2krc, u), y2(x, u) = (x + O, u) 

and shows that i(4/FI cannot be compact, 

In the first part of the alternative we have: 

YI (x, u) = (x + 2krr, u + cosxr ) ,  

y2(x, u) = (x + 2lzr, u + cosxRe c~ + sin xIm ~), 

and thus 

~"y(~ (x, u) = (x + 2(nk + lm)Tr, u + cos x(nr + mRe c~) + sin x(m,~ot) ). 

One can choose m and n such that nk + lm = 0 and one can choose x such that cos x(nr + 
m R e u )  + sinx(m~'u) = 0. Hence there are fixed points and the action of  F1 is not free. 

The second case, where Yl = (a, 0) (a # 2/zr) can be treated similarly. The second 

generator y2 = (0, a )  commuting with }'1 must be of  the form (0, 0) and one checks as 

above that the quotient of  aT/by Fi cannot be compact. We conclude by 

L e m m a  9.5. The universal cover of the orbit of Y* in £(2)* has no affine symplectic 
compact quotient. 

In case VI, the coadjoint orbit (M, o9) of  X* in A,'I (2)*, we proceed essentially as in case 

V. 
Let a 6 A ( =  automorphism group of  M) and assume a stabilizes a basis point o (6 M). 

Then a. o ~ SL(2, •) and commutes with the curvature endomorphism. Hence in the basis 

{Y, Z} of M0 (cf. Proposition 8.1) it has a matrix of  the form 

(a*°) = ( E c ~ ) '  E2 = 1' cE[R" 
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As an element of  the form exp k (k ~/C) has a differential in 0 of  the form: 

(expk)*° = d 1 

and as - I  coincides with the differential of  the symmetry at 0, we see that A has two 

connected components and that Ao = identity component  of  the isometry group of the 
Minkowski plane = G = transvection group of  M. 

As the curvature endomorphism stabilizes one direction, any compact, affine symplectic 
quotient V of  M will have X (V) = 0 and hence V is diffeomorphic to T 2. 

So V = M / F ,  where F is a subgroup of A isomorphic to 77 2. Now, as Fl = F N G 

has finite index in F ,  it is still isomorphic to 77 2 and it will be sufficient, for our purpose, 

to investigate the quotients M / F I .  To classify, up to conjugation, the subgroups of G, 
isomorphic to 772 acting freely and properly discontinuously on M we now describe more 
explicitly G and M. 

Let G = {(t, u, v) ~ N 3 } with the multiplication given by 

(t, u, v)( f f  , u t, v I) = (t + t',  et u r + u, e - t  v ' -k- v). 

and let a be the involution automorphism defined by 

~r(t, u, v) = ( - t ,  v, u). 

Then the group K of  fixed points of  cr is 

K = {(0, s , s ) t s  ~ ~}. 

The affine symmetric space G / K  is precisely our orbit. Indeed if we define: 

d 
Z = (t, 0, 0)10, X = (0, t, t)10, Y = - ~ ( 0 ,  - t ,  t)10. 

One checks that the commutation relations coincide with the ones given in Proposition 8.1. 
Let  zr : G ~ G / K  = M : (t, u, v) --+ (t, w = e - t u  - e tv)  be the canonical projection. 

The action of G on M is given by 

(t, u, v) • (s, w)  = (s q- t, w q- ue -(s+t) - ve(S+t)). 

Now, if (a, b, c) 6 G, its conjugacy class is the set of  elements of  the form 

(t, u, v)(a,  b, c)( t ,  u, v) - !  

= (a, etb + (1 - ea)u,  e - t c  q- (1 - e - a ) v ) ,  t, u, v E R. 

So we have two types of  conjugacy classes (not counting the trivial one) 
(a) the conjugacy class contains an element of  the form 

(0, E, c), ~2 = 1, 
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(b) the conjugacy class contains an element of  the form 

(a, 0, 0), a : ~ 0 .  

One checks that elements of  type (a) never commute with elements of  type (b). Hence if 
Vl, )/2 are generators of / '1  one may assume either 

(1) Yi, Ye of type (a) or 

(2) VI, Y2 of type (b) 
In case (1) we have 

~'1 = (0, E, c), 

and 

Y2 = (0, b', c') 

gl (s, w) = (s, w + Ee-" - ceS), 

Thus the quotient by Fl cannot be compact. 

In case (2), we have 

YI = (a, 0, 0), ]/2 = (a ' ,  0, 0) 

and 

F2(s, w) = (s, w + b 'e  -s  - c 'e ~) 

Fl(S, W) = (s + a, w), F2(s, w) = (s' + a, w). 

Thus the quotient by / '1  cannot be compact. We conclude by: 

Lemma 9.6. The orbit o f  X* in .A4(2)* has no affine symplectic compact quotient. 

Summarizing the Lemmas  1 - 6 we get 

Theorem 9.1. Let (M, o~, V) be a compact locally symmetric symplectic, complete, two- 

dimensional manifold. Then either 

- M is the sphere S 2 with a multiple o f  its standard symplectic structure wo and V is the 

Levi Civita connection associated to its standard Riemannian structure go (with constant 

positive curvature), 

- M is the torus T 2 with aflat  affine connection, 

- M is a surface o f  genus g(g > 2), Zg, with a connection V which is the Levi Civita 

connection associated to a metric h o f  constant negative curvature. 

I0. The two-dimensional case: a global approach II 

We have proven (Theorem 7.3) that i fa  compact symplectic surface (M, co) admits a sym- 
plectic connection V solution of our field equations, then (M, w, V) is a locally symmetric 
symplectic surface. We have also proven (Theorem 9.1) that a complete locally symmetric 
symplectic compact surface (M, ~o, V) necessarily belongs to a short list. We would like to 
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conclude by determining for any compact symplectic surface (M, o9) the set of  symplectic 

connections V which are solutions of  our field equations and geodesically complete. Clearly 

the symplectic diffeomorphism group S(M, co) acts on this set of  connections and what we 

are really interested in is to describe the set £ of  equivalence classes of  such connection 

modulo the action of  S(M, col We shall proceed case by case. 

Consider any volume form o9 on S 2. Let on the other hand go be the Riemannian metric 

on the sphere, with constant curvature = +1 and let coo be the associated Riemannian 

volume form chosen in such a way that coo and co belong to the same orientation. (S 2, go) 

is a Riemannian symmetric space and up to homothety is uniquely determined by S 2. The 

Levi Civita connection V ° of  go is a symplectic connection for w0, is complete and is a 

solution of  our field equations for (S 2, coo) and in fact the only one, up to isometry [5-7]. 

There exists a positive real number k such that 

f co = f kcoo. 
S 2 S 2 

This says that the corresponding de Rham cohomology classes are equal: 

[col = [kcoo]. 

Thus Moser 's  stability theorem [8] tells us that there exists a smooth isotopy ~0t (0 < t < 1) 

such that: (i) ~Po = idFs2 ; (ii) Vt, ~Pt is a diffeomorphism of $2; (iii) ~ptco = kogo. Clearly if 
g is the Riemannian metric defined by 

~otg = go 

and if V is the Levi Civita connection associated to g, V is a symplectic connection for co, is 

complete and is a solution of  our field equations. Hence we have existence. Furthermore if 

V'  is another symplectic connection, solution of  the field equations relative to 09, we know 

that it is symmetric (as S 2 is simply connected) and thus can be obtained from V ° as V and 
hence differs from V by an element of  S(S 2, w). 

L e m m a  10.1. Let co be a volume form on S 2. Then there exists a symplectic connection V 
which is complete and solution of our field equations; furthermore two such connections 
are related by a symplectic diffeomorphism. The set £ consists of only one point. 

Consider any volume form on the toms T 2. Let on the other hand w0 be the "constant" 
volume form o n  T 2 such that it belongs to the orientation given by co and such that 

f co ~ f c o 0 .  

T 2 T 2 

As above there exists a smooth isotopy ~t such that 

'~<CO ~ COO. 
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If  re : ~2 ~ T 2 denotes the standard covering, re*coo is a constant symplectic form on ~2. 

The symplectic vector space (~2, re*wo) admits a flat complete symplectic affine connec- 

tion Vo such that (R 2, ~r*coo, Vo) is an affine symmetric space. This connection is unique 
up to a symplectic affine transformation of ( ~ 2  Jr*wo). The covering Jr is induced by the 
action of a free abelian subgroup F of ~2 with two generators acting properly discontin- 
uously and freely on ~2. Clearly the elements of  F are affine symplectic transformations 

of (~2, re*co0, V0) and thus V0 induces a flat affine symplectic connection V0 on (T 2, co{)). 

This is locally symmetric complete and solution of our field equations relative to coo. Hence 
the connection V defined by 

Vx Y = q)l* V°~-.t X~0/*1 Y 

is a solution of our field equations for co. Hence we have existence. 

Conversely if (T 2, co, VI ) and (T 2 , co, V2) are two solutions of our field equations, they 

are locally symmetric, flat, complete, symplectic. Hence they are both covered by the stan- 
dard symmetric symplectic vector space (~2, ff~, V) and are obtained by the action of a 

discrete subgroup Fi (resp. F2) of  the affine symplectic group A of ( ~ 2  &, V). Now A = 

SL(2, I~) • ~2 and Pl (resp. P2) is isomorphic to 77 2 and acts freely and properly discontin- 
uously on ~. 

The torus (T 2, co, VI) and (T 2, co, V2) are affinely, symplectically equivalent iff the 

groups Fi are conjugate in A. 

L e m m a  10.2. Let co be a volume form on T 2. Then there exists a symplectic connection V 

which is complete and solution of our field equations. Furthermore the set E of equivalence 

classes of such solutions is the set of conjugacy classes of discrete subgroups F of S L (2, ~) .  
~2, isomorphic to 77 2 and acting freely and properly discontinuously on ~2 

Consider any volume form co on the surface r~, of genus g > 2. By Poincar6's theorem 

we know that there exists on 27~ a Riemannian metric of  negative scalar curvature = - I. 

The space (Sg,  go) is locally symmetric and complete, let coo be the Riemannian volume 

form belonging to the orientation defined by co. The Levi Civita connection V0 of go is a 

symplectic connection solution of our field equations relative to coo. There exists a positive 
real number k such that 

Using the same argument as above we get existence of a solution of the field equations tbr 
co. Let (~Tg, co, Vl ) (i = 1, 2) be a solution of our field equations, which is complete. Then 
it is locally symmetric and complete. Hence it is affinely, symplectically covered by the unit 
disk (equivalently by the orbit of  E - F in sl(2, ~))  with its standard symmetric structure, 
its standard Riemannian metric of  constant negative curvature - 1 and with symplectic form 
a constant multiple of  the standard symplectic form. In the proof of  Lemma 9.3, we have 
shown that the group F of deck transformation of the covering re : D ~ Z' e is composed 
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of holomorphic isometries of  D. Hence (Eg, w) inherits a Riemannian metric of  constant 
negative curvature equals to - 1. Observe also that if we are given h, the orienation of Eg and 
the real number k, o9 is uniquely determined. So if there exists an affine symplectomorphism 

~0 of (,~g, 09, Vl) ---> (Eg,  o9, V2) this is also a holomorphic isometry for the corresponding 

metrics h l and h2. Conversely such a holomorphic isometry induces an affine equivalence 

of our two solutions. Hence we have 

Lemma 10.3. Let o9 be a volume form on a compact surface Sg of genus g > 2. Then there 

exists a symplectic connection V which is complete and solution of  our field equations. 

Furthermore the set E of  equivalence classes of  such solutions is isomorphic to the set 

of  equivalence classes of constant curvature (=  - 1 )  Riemannian metrics on Sg modulo 

diffeomorphisms which stabilize o9. 

Putting together Lemmas  10.1-10.3, we get 

Theorem 10.1. Let o9 be a volume form on a compact surface M. Then 

(i) I f  M = S 2, E = 1 point 

(ii) I f  M = T 2, ~ = set of  conjugacy classes of  discrete subgroups F of  SL(2, R) • •2 

isomorphic to 772 and acting freely and properly discontinuously on R 2 

(iii) I f  M = Zg (g > 2) then ~ = set of  equivalence classes of constant curvature (= - 1) 
metrics modulo the group of  diffeomorphisms stabilizing o9. 

Remarks. Clearly if  dp is a diffeomorphism of  ,~g, it sends a solution for o9 on a solution 

for dp* og. Hence if one is interested in the space of  equivalence classes of  solutions on Zg 

one has either the classical moduli space or Teichmiiller space. 

11. The two dimensional case: a local approach II 

We now want to investigate the non-compact situation. From the start we will restrict 
ourselves to the case of  R 2, and we shall also assume that the preferred connection we want 

to describe is geodesically complete. From our previous analysis we get 

Proposition I I . I .  Let (~2, w, V) be a preferred symplectic connection on the plane which 

is locally symmetric and complete. Then it is globally symmetric and the manifold is sym- 

plectomorphic and affinely equivalent to one of  the following manifolds: 
(i) (~2, wo, Vo) viewed as a symplectic vector space and V is the flat affine connection. 

(ii) (~2, wl, VI ) viewed as the universal cover of  the coadjoint orbit of  the element H of  

sl (2, •). The symplectic form is a multiple of the Kostant Souriau form. The connection 
is the Levi Civita connection associated to the Lorentz metric on this orbit which is 
induced by the Killing form of  sl(2, R). 

(iii) (R 2, o92, V2) viewed as the coadjoint orbit of  the element (E -- F) of  sl(2, R). The 

symplectic form is a multiple of  the Kostant Souriau form. The connection is the Levi 
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Civita connection associated to the Riemannian metric on this orbit which is induced 

by the Killing form of  sl(2, ~). 

(iv) (~2, w3, V3) viewed as the universal cover of  the coadjoint orbit of  the element Y* of 

E(2)*. The symplectic form is the Kostant Souriau form and the connection is the unique 

linear symplectic connection for which the symmetries are affine transformations. 

(v) (~2, co4, V4) viewed as the coadjoint orbit of the element X* + Y* of  A/f(2)*. The 

symplectic form is the Kostant Souriau form and the connection is the unique linear 

symplectic connection for which the symmetries are affine transformations. 

R e m a r k s .  This proposition indicates how complicated the non-compact situation is. lndeed 

all these spaces are symplectomorphic to the standard symplectic vector space (i.e. 3 a 

global Darboux chart) but no two of these preferred connections are affinely equivalent. 

We recall that the local behavior of a solution of the field equations is governed by a 

function/3. The Proposition 11.1 takes care of the case/3 = O. 

P r o p o s i t i o n  11.2. Let (~2, o), V) be a solution of  the field equations. Assume the function 

/3 is constant (fl =/30 ~ 0). Then i fU  = {p E ~2 [ u(p) ~ 0}, U is an open dense subset 

of R 2. Furthermore if p ~ U, there exists a Darboux chart (V, ~p) centered at p, (V C U ), 

with coordinates x a (a = 1,2) such that 

(i) oglv = dx 1 A dx 2 

(ii) ulv = -2flo(1 + x l )dx  2 

(iii) the Christoffel symbols of  V on V have the expression 

1 1 
Va~Ol-- 2 ( 1 + x l )  01' V~tO2-- 2 ( l + x J )  02' 

V0201 = VO102, V0202 = -2/30(1 + x 1)301 . 

Proof.  The assumption fl = fl0 # 0 implies that the field equations reduce to 

1 
rab = ---~UaUb, Ua:b = / 3 0 O ) a b  . /3 

The set U = {p 6 R 2 I u(p)  = 0} is open. Furthermore if q 6 ~2 \ U is an interior 

point of  ~2 \ U, we have a contradiction as on one hand du[q = 0 and on the other hand 

du[q = -2/30w 5~ 0. Hence the density of  U. Let p E U and let ff2p Q U be the domain of  

a chart with coordinates x a (a = 1,2) such that 

(i) xa(p) = 0 

(ii) ifK is defined by i(K)w = u, then fi- = 3/Ox l 
In this chart 

w = a ( x ) d x l A  dx 2, u = a (x )dx  2. 

Recall that 

du = -2floco ~ 0 = da A dx 2 
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1 Hence da and dx 2 are linearly independent and there exists ~2p C S-2p such that a and x 2 

I such that form a coordinate system on l'2p 1 . Write ~a for the coordinates on 12p 

a = -2130(1 + ~1), £2 ~--. X 2. 

Thus 

u = -2130(1 + ~ 1 ) d £ 2 ,  co = d£ J /x d£ 2. 

1 the relations ua;b = 13Ocoab and the fact that the connection is symplectic give Now on Y2p 

the value of  5 of  the 6 Christoffel symbols: 

1 1 
V~tOl = -2(1__-~-x1~) 01' V0102 = V0201 - -  2(1 + x l )  02' 

V02 02 = A ( x  I , x 2 ) 0 1 .  

where A is an arbitrary function (we have omitted the-on the x a's). The components of  the 

Ricci tensor are given in terms of  the components of  u: 

rll = r12 = 0, r22 = 4/30(1 + x 1)2. 

On the other hand, computing the Ricci tensor in terms of the Christoffel symbols and their 

derivatives, we get the condition 

a xl)2" - - O i A  + - -  - -  4/30(1 + (11.1) 
l + x  1 

The most general solution of  (11.1) is given by 

A = -2130(1 + x l )  3 + B(x2)(1 + x  1) 

and depends on an arbitrary function B of  one variable. 
1 We are now going to use the arbitrariness of  the coordinates on S2p to get rid of  the 

function B on an eventually smaller neighborhood ~2 .  

A change of  local coordinates compatible with the fact that the chart is Darboux and the 

particular form of u, is necessarily of  the form: 

1 x l  I x 2  x I = - ( 1  + ) - 1, = tp(Xt2). 

where ~b = d c p / d x  '2. In this coordinate system, the Christoffel symbols have the same 

expression except that the function B(x 2) is replaced by the function 

B'(x '2) = ~2(B  o ~0) + ~ 7  ~ - 

So we are looking for a function ~0 such that 

2~b'~b - 3~ 2 = 2~b4(8 o tp). 

There exists a solution ~o such that ~o(0) = 0, ~b(0) = 1, ~(0) = 0 defined on a small interval 
2 []  centered at 0. This allows us to define the neighborhood V = ~p .  
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Propos i t ion  11.3. Let (~2, ~o0) be the standard symplectic vector space with coordinates 

xa(a = 1,2). Let U + be the open set (1 + x  t) > O (resp. (1 + x  I) < O) and let V ± be the 

linear symplectic connection on U + defined by Proposition 11.2. Then the curves x 2 =c t  

are geodesics such that t = O f o r  x I = x I and ~ (0) = B ( B < 0 i f  l + x I > 0 and B > 0 

i f  l + x~ < 0). One reaches the "boundary" x 1 = - 1  ± n a t ± m e t  = q::2/BI1 + x l l  

and the veloci~ becomes infinite. In particular, the spaces (U +, o90, V ±) are geodesically 

incomplete and cannot be extended. 

The proof  is an easy calculation. 

P r o p o s i t i o n  11.4. Let (~2, 09, V) be a solution o f  the f ield equations and assume d[3 7/: O. 

Let U be the open set defined by U = {p I r(fi-, fi-)(p) 5~ 0}. Then f o r  any p c U, there 

exists a Darboux chart (V,  (p) centered at p with coordinates x u (a = 1, 2) such that 

(i)  V c U 

(i i)  x 2 = / 3 I v  - fl(p) 
(iii) dx I --  ~2+elv  

(iv) The Christoffel symbols in this chart have the expression 

Vat Ol = --[(X 2 -+- tip)2 _+_ B][(x 2 _+_ tip)2 .q._ 2(x 2 + f lp)A - B]O2, 

x 2 +/3p Ol, 
V~ t 02 = 70201 = [ (x2  -'l'- f lp)2 q._ B] 

X 2 --~ tip 
Va 101 [(x 2 + tip)2 + B] " 

Proof.  If  one notices that the 1-form u/fJ 2 + B is closed, the proposition is an easy refor- 

mulation of  Lemma 5.2. 

If  one assumes that the constant B is strictly negative (B = - K )  the formulas above 

define a preferred connection in the bands of  R e, ]x2l < K,  x 2 > K,  x -  < - K .  The curves 

x I = c t  are geodesics and using an affine parameter along with them, one sees that one 

reaches one of the "boundaries" in a finite time and the velocity vanishes at the boundary.. 

So one cannot patch together these various solutions. 

If  one assumes that the constant B = 0, the formulas above define a preferred connection 

in the upper and in the lower half plane. The curves x I = c t  are geodesics and using an 

affine parameter, one sees that it takes an infinite time to reach the boundary; the velocity 

tends to zero when one goes to the boundary. On the other hand, any geodesic along which 

x I is not constant reaches the boundary (x 2 = 0) in a finite time and for a finite value of  

x I. So one cannot patch together the two solutions. 

If  one assumes that the constant B is strictly positive, the formulas above define a preferred 

connection on the whole plane. The geodesic equations are readily integrated and one sees 

that the connection is geodesically complete. 

We thus get the following 
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Theorem 11.1. On the plane (•2, o90) with the standard symplectic structure, there ex- 

ist a family of preferred connections V which are geodesically complete and affinely not 

equivalent. These are 

(i) V0 = the standard flat connection, 

(ii) v I-(k) = a  one parametric family of symmetric connections corresponding to a constant 

curvature Lorentz metric, 

(iii) V~ k) = a one-parameter family of symmetric connections corresponding to a constant 

negative curvature Riemannian metric, 

(iv) V3 = a symmetric connection associated to a coadjoint orbit of the group E(2), 

(v) V4 = a symmetric connection associated to a coadjoint orbit of the group M(2), 

(vi) V~ a' B) =a two parameter family of non-symmetric connections. 

12. Remark for further development 

The results in dimension 2 encourage us to look at higher dimension. Let us simply 

indicate in this direction a construction which given a preferred connection on (M, w) 

builds a preferred connection on ( T ' M ,  dO) (0 = Liouville form on the cotangent bundle). 

Recall a classical construction due to Yano and Kobayashi [ 10]. If  Jr : TM ~ M denotes 

the tangent bundle to M, one defines 2 lifts of  tensor fields on M to tensor fields on TM 

(of the same type). 

The vertical lift is characterized by the following properties: 

(i) If  S and T are tensor fields on M and if S v and T v denote their vertical lifts: 

(S ® T) v = S v ® T v. 

(ii) If f • C~(M), 

f v  = J r , f .  

(iii) If  f • C ~ ( M ) ,  

(df)V = d(fV). 

(iv) I f X  • F ( T M )  and f • C ~ ( M ) ,  

XV(df)  = (X f )  v, 

where (on the left-hand side) d f  is viewed as a function on TM. 

This implies that the vertical lift of  a p-form O/on M is 

O/v ~-- Jr*O/. 

Also if xi(i < n = d imM)  are local coordinates on M and (x i, yi)(i _< n) are the 
corresponding local coordinates on TM: 

XV = x i  3 O --_- ~ X i _ _  
i 3Yi  " 
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The complete lift of  tensor fields is characterized by the following properties: 

(i) If S and T are tensor fields on M and S", T c denote their complete lifts: 

( S ® T )  c = S  c ® T  v + S  v ® T  c. 

(ii) If f c C°° (M) ,  

f " =  df.  

where (as above) d f  is viewed as a function on TM. 
(iii) If f E C°c (m) ,  

(df)C = d(fC) .  

(iv) If  X • F(TM) and f • C~C(M), 

X' ( f  c) --_ (X f )  c. 

In particular, using local coordinates on M and TM as above, we have 

fC (x, y) = Z ~f-xi (X)yi, 
i 

02f  Of (x) dxJv + Z (df)C(x' Y) = Z OxJOx------7 Ox---7(x) d r ' ,  
i,.j i 

OX i 0 
X"(x, y) = Z Xi 5-" yJ 

i i,j 

o?'(x, y) = ~ ~ x j y  dx i -t'- Z o t i  dy i. 
t,.i i 

Now if  o) is a symplectic form on M, ~o ' is a 2-form on TM which reads, locally, 

1 
~ y k  dxi A dx j + Z ° ) i Y  dvi A 

o)c = 2 i,~j.k OX" i,j 
dx j 

and is thus clearly a symplectic form on TM. 
The form o) induces a linear isomorphism __ : TM --+ T*M : X --+ i(X)oJ. 

L e m m a  12.1. One has the identity 

oJ' = co*(d0). 

One can lift a symplectic connection V on M to a connection V c on TM and push it 

forward to T*M. 
The complete lift V c of  a connection V on M, is defined by 

v ~ , ( Y  C) = (VxY) C. 
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In a local chart (x i , yi) of T M  one has 

cl Fcl cl 
F ik = F/k, ik = O, F ik = O, 

F F =  F - A  = 8xJ y j '  F u = O '  

where barred indices refer to the yJ 'S coordinates. From these formulas one deduces easily 

that 

[X c, yc] = [X, y]c, 

v ~ ,  r "  - v ~ c x  c -  [ x  c, re]  = ( V x r  - v r x  - I X ,  y ] ) c .  

Hence if V is torsion free, so is V c. One also notices that 

wc(XC, yc) = (w(X,  y))c  

from which one deduces that V is a symplectic connection for w, then V c is a symplectic 

connection for o)q Notice finally that 

Rc(x  c, Yc)Z~ = (R(X, Y)Z) ~, rC(X c, yc) __= 2(r(X, Y))~'. 

Hence 

(VCx,.rC)(Y c , Z c) = XCrC(y c, Z c ) - rC(V~,.y c, Z c) - rC(y c ' V~,.Z c) 

= 2XC(r(X,  y) )v  _ 2 ( r (VxY ,  Z))  v - 2(r(Y, VxZ)) t' 

= 2 [Xr(Y,  Z)  - r ( V x Y ,  Z)  - r(Y,  VxZ)]" 

= 2( (Vxr ) (Y ,  Z) )  v 

which proves 

Proposition 12.1. Let ( M, o)) be a symplectic manifold and let V be a preferred symplectic 

connection. Then on (T 'M,  dO), the linear connection (7 defined by 

(7 x Y V c - = o ) ,  ~_~lXO).ly, 

where V c denotes the complete lift o f  V to T M and co is the linear isomorphism o f  T M 

with T ' M ,  is a symplectic preferred connection. 

Acknowledgements 

Some of the results of this paper have been presented at the annual meeting of the 

Japan Mathematical Society in Matsumoto in March 1997 and at a workshop at Warwick 

University in September 1997. 
The second named author thanks his friends Luc Lemaire and John Rawnsley with whom 

he had many fruitful discussions. He also thanks Simone Gutt who transformed the heuristic 
arguments of Sections 9 and 10 into proofs. 



E Bourgeois, M. Cahen/Journal of Geometry and Physics 30 (1999) 233-265 265 

References 

[1] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford University Press, Oxford, 1995, 
see Proposition 2.61, p. 67. 

[2] A.L. Besse, Einstein Manifolds, Springer, 1987. 
[311 D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford University Press, Oxford, 1995, 

see Lemma 5.51, p. 180. 
[41] T. Delzant, Hamiltoniens prriodiques et images convexes de l' application moment, Bull. Soc. Math. de 

France 116 (1988) 315-339. 
[5] E Bieliavsky, M. Cahen, S. Gutt, Symmetric symplectic manifolds and deformation quantization, in: 

Modern Group Theoretical Methods in Physics, Math. Phys. Stud., vol. 18, pp. 63-75. 
[6] O. Loos, Symmetric Spaces, Benjamin, New York, 1969. 
[7] E Bieliavsky, Symmetric Symplectic Manifolds, Ph.D. Thesis, Brussels, 1995. 
[811 D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford University Press, Oxford, 1995, 

see Lemma 3.14, p. 92. 
[911 A.J. Tromba, Teichmtiller Theory in Riemannian Geometry, Birkh~iuser, Basel, 1992, see Theorem 137, 

p. 25. 
[10] K. Yano, S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles, Math. Soc. 

Jpn. 18 (1966) 194-210 and 236-246. 
[111 J.W. Milnor: On the existence of a connection with curvature zero. Comment. Math. Helv. 32 (1958) 

216-223. 
[12] M. Cahen, M. Parker. Pseudo Riemannian symmetric spaces. Mem. Amer. Math. Soc. 229 (1980). 
[13] A. Lichnerowicz. Throrie relationistes de la gravitation et de l'61ectromagnrtisme. 
[14] A. Avez, Formule de Gauss-Bonnet en mrtrique de signature quelconque, C.R. Acad. de Paris 255 

(1962) 2049-2051. 


